
Q: A Functional Programming Language for Multimedia
Applications

Albert GRÄF
Department of Music-Informatics
Johannes Gutenberg University

55099 Mainz
Germany

ag@muwiinfa.geschichte.uni-mainz.de

Abstract

Q is a functional programming language based on
term rewriting. Programs are collections of equa-
tions which are used to evaluate expressions in a
symbolic fashion. Q comes with a set of exten-
sion modules which make it a viable tool for sci-
entific programming, computer music, multimedia,
and other advanced applications. In particular, Q
provides special support for multimedia applications
using PortAudio, libsndfile, libsamplerate, FFTW,
MidiShare and OSC (including a SuperCollider in-
terface). The paper gives a brief introduction to the
Q language and its multimedia library, with a fo-
cus on the facilities for MIDI programming and the
SuperCollider interface.

Keywords

Computer music, functional programming, multime-
dia programming, Q programming language, Super-
Collider

1 Introduction

The pseudo acronym “Q” stands for “equa-
tional programming language”. Q has its roots
in term rewriting, a formal calculus for the
symbolic evaluation of expressions coming from
universal algebra and symbolic algebra sys-
tems (Dershowitz and Jouannaud, 1990). It
builds on Michael O’Donnell’s ground-breaking
work on equational programming in the 1980s
(O’Donnell, 1985) and the author’s own re-
search on efficient term pattern matching and
rewriting techniques (Gräf, 1991).

In a sense, Q is for modern functional pro-
gramming languages what BASIC is for imper-
ative ones: It is a fairly simple language, thus
easy to learn and use, yet powerful enough to
tackle most common programming tasks; it is
an interpreted (rather than compiled) language,
offering adequate (though not C-like) execu-
tion speed; and it comes with a convenient in-
teractive environment including a symbolic de-
bugger, which lets you play with the parts of

your program to explore different solution ap-
proaches and to test things out.

Despite its simplicity, Q should not be mis-
taken for a “toy language”; in fact, it comes
with a fairly comprehensive collection of li-
braries which in many areas surpasses what is
currently available for its bigger cousins like ML
and Haskell. Moreover, Q’s SWIG interface
makes it easy to interface to additional C and
C++ libraries if needed.

The Q programming environment is GPL’ed
software which has been ported to a large va-
riety of different platforms, including Linux
(which has been the main development platform
since 1993), FreeBSD, Mac OS X, BeOS, So-
laris and Windows. Q also has a cross-platform
multimedia library which currently comprises
MIDI (via Grame’s MidiShare), audio (provid-
ing interfaces to PortAudio v19, libsndfile, lib-
samplerate and FFTW) and software synthe-
sis (via OSC, the “Open Sound Control” proto-
col developed by CNMAT, with special support
for James McCartney’s SuperCollider software).
Additional modules for 3D graphics (OpenGL)
and video (libxine) are currently under develop-
ment.

In the following we give a brief overview of the
language and the standard library, after which
we focus on Q’s multimedia facilities. More in-
formation about Q can be found on the Q home-
page at http://q-lang.sourceforge.net.

2 The language

At its core, Q is a fairly simple language which
is based entirely on the notions of reductions
and normal forms pertaining to the term rewrit-
ing calculus. A Q program or script is simply
a collection of equations which establish alge-
braic identities. The equations are interpreted
as rewriting rules in order to reduce expres-
sions to normal forms. The syntax of the lan-
guage was inspired by the first edition of Bird
and Wadler’s influential book on functional pro-

gramming (Bird and Wadler, 1988) and thus
is similar to other modern functional languages
such as Miranda and Haskell. For instance, here
is how you define a function sqr which squares
its argument by multiplying it with itself:

sqr X = X*X;

When this equation is applied to evaluate an
expression like sqr 2, the interpreter performs
the reduction sqr 2 => 2*2. It then goes on to
apply other equations (as well as a number of
built-in rules implementing the primitive oper-
ations such as arithmetic) until a normal form
is reached (an expression is said to be in nor-
mal form if no more equations or built-in rules
can be applied to it). In our example, the in-
terpreter will invoke the rule which handles in-
teger multiplication: 2*2 => 4. The resulting
expression 4 is in normal form and denotes the
“value” of the original expression sqr 2.

Note that, as in Prolog, capitalized identifiers
are used to indicate the variables in an equation,
which are bound to the actual values when an
equation is applied. We also remark that func-
tion application is denoted simply by juxtaposi-
tion. Parentheses are used to group expressions
and to indicate “tuple” values, but are not part
of the function application syntax. This “cur-
ried” form of writing function applications is
ubiquitous in modern functional languages. In
addition, the Q language also supports the usual
infix notation for operators such as + and *.
As in other modern functional languages, these
are just “syntactic sugar” for function applica-
tions; i.e., X*X is just a convenient shorthand
for the function application (*) X X. Operator
“sections” are also supported; e.g., (+1) denotes
the function which adds 1 to its argument, (1/)
the reciprocal function.

Equations may also include a condition part,
as in the following (recursive) definition of the
factorial function:

fact N = N*fact (N-1) if N>0;
= 1 otherwise;

Another useful extension to standard term
rewriting are the “where clauses” which al-
low you to bind local variables in an equa-
tion. For instance, the following equation de-
fines a function for solving quadratic equations
x2 + px + q = 0. It first checks whether the
discriminant D = p2/4 − q is nonnegative be-
fore it uses this value to compute the two real
solutions of the equation.

solve P Q = (-P/2+sqrt D,-P/2-sqrt D)
if D >= 0 where D = P^2/4-Q;

You can also define global variables using a
def statement. This is useful if a value is used
repeatedly in different equations and you don’t
want to recalculate it each time it is needed.

def PI = 4*atan 1;

Functions on structured arguments are de-
fined by “pattern matching”. E.g., the quick-
sort function can be implemented in Q with the
following two equations. (Note that lists are
written in Prolog-like syntax, thus [] denotes
the empty list and [X|Xs] a list starting with
the head element X and continuing with the list
of remaining elements Xs. Furthermore, the ++
operator denotes list concatenation.)

qsort [] = [];
qsort [X|Xs] = qsort (filter (<X) Xs) ++
[X] ++ qsort (filter (>=X) Xs);

Higher-order functions which take other func-
tions as arguments can also be programmed in a
straightforward way. For instance, the filter
function used above is defined in the standard
library as follows. In this case, the function ar-
gument P is a predicate expected to return the
value true if an element should be included in
the result list, false otherwise.

filter P [] = [];
filter P [X|Xs] = [X|filter P Xs] if P X;

= filter P Xs otherwise;

In contrast to “pure” functional languages
such as Haskell, Q takes the pragmatic route in
that it also provides imperative programming
features such as I/O operations and mutable
data cells (“references”), similar to the corre-
sponding facilities in the ML programming lan-
guage. While one may argue about the use of
such “impure” operations with side-effects in
a functional programming language, they cer-
tainly make life easier when dealing, e.g., with
complex I/O situations and thread synchro-
nization. The || operator can be employed
to execute such actions in sequence. For in-
stance, using the built-in reads (“read string”)
and writes (“write string”) functions, a simple
prompt/input interaction would be written as
follows:

prompt = writes "Input: " || reads;

References work like pointers to expressions.
Three operations are provided: ref which cre-
ates a reference from its initial value, put which
changes the referenced value, and get which re-
turns the current value. With these facilities
you can realize mutable data structures and
maintain hidden state in a function. For in-
stance, the following function counter returns
the next integer at each invokation, starting at
zero:

def COUNTER = ref 0;
counter = put COUNTER (N+1) || N

where N = get COUNTER;

Despite its conceptual simplicity, Q is a
full-featured functional programming language
which allows you to write your programs in a
concise and abstract mathematical style. Since
it is an interpreted language, programs writ-
ten in Q are definitely not as fast as their
counterparts in C, but they are much easier to
write, and the execution speed is certainly good
enough for practical purposes (more or less com-
parable to interpreted Lisp and Haskell).

Just like other languages of its kind, Q has
automatic memory management, facilities for
raising and handling exceptions, constructs for
defining new, application-specific data types,
and means for partitioning larger scripts into
separate modules. Functions and data struc-
tures using “lazy” evaluation can be dealt with
in a direct manner. Q also uses dynamic typing,
featuring a Smalltalk-like object-oriented type
system with single inheritance. This has be-
come a rare feature in contemporary functional
languages which usually employ a static Hind-
ley/Milner type system to provide more safety
at the expense of restricting polymorphism. Q
gives you back the flexibility of good old Lisp-
style ad-hoc polymorphism and even allows you
to extend the definition of existing operations
(including built-in functions and operators) to
your own data types.

3 The library

No modern programming or scripting language
is complete without an extensive software li-
brary covering the more mundane programming
tasks. In the bad old times of proprietary soft-
ware, crafting such a library has always been a
major undertaking, since all these components
had to be created from scratch. Fortunately,
nowadays there is a large variety of open source

software providing more or less standardized so-
lutions for all these areas, so that “reinventing
the wheel” can mostly be avoided.

This is also the approach taken with the Q
programming system, which acts as a kind of
“nexus” connecting various open source tech-
nologies. To these ends, Q has an elabo-
rate C/C++ interface including support for
the SWIG wrapper generator (www.swig.org),
which makes it easy to interface to existing
C/C++ libraries. This enabled us to provide
a fairly complete set of cross-platform exten-
sion modules which, while not as comprehen-
sive as the facilities of other (much larger) lan-
guage projects such as Perl and Python, make it
possible to tackle most practical programming
tasks with ease. This part of the Q library also
goes well beyond what is offered with most other
modern functional languages, especially in the
multimedia department.

The core of the Q programming system in-
cludes a standard library, written mostly in
Q itself, which implements a lot of useful Q
types and functions, such as complex numbers,
generic list processing functions (including list
comprehensions), streams (a variant of lists fea-
turing lazy evaluation which makes it possible
to represent infinite data structures), container
data structures (sets, dictionaries, hash tables,
etc.), the lambda calculus, and a PostScript in-
terface. Also included in the core is a POSIX
system interface which provides, e.g., lowlevel
I/O, process and thread management, sock-
ets, filename globbing and regular expression
matching.

In the GUI department, Q relies on Tcl/Tk
(www.tcl.tk). While Tk is not the prettiest
toolkit, its widgets are adequate for most pur-
poses, it can be programmed quite easily, and,
most importantly, it has been ported to a large
variety of platforms. Using SWIG, it is also
possible to embed GTK- and Qt-based inter-
faces, if a prettier appearance and/or more so-
phisticated GUI widgets are needed. (Com-
plete bindings for these “deluxe” toolkits are on
the TODO list, but have not been implemented
yet.)

For basic 2D graphics, Q uses GGI, the “Gen-
eral Graphics Interface” (www.ggi-project.org),
which has been augmented with a FreeType in-
terface to add support for advanced font han-
dling (www.freetype.org). Moreover, a mod-
ule with bindings for the ImageMagick library
(www.imagemagick.org) allows you to work

with virtually all popular image file formats and
provides an abundance of basic and advanced
image manipulation functions.

To facilitate scientific programming, Q has in-
terfaces to Octave, John W. Eaton’s well-known
MATLAB-like numerical computation software
(www.octave.org), and to IBM’s “Open Data
Explorer”, a comprehensive software for doing
data visualization (www.opendx.org).

Web programming is another common occu-
pation of the contemporary developer. In this
realm, Q provides an Apache module and an
XML/XSLT interface (xmlsoft.org) which al-
low you to create dynamic web content with
ease. Moreover, an interface to the Curl li-
brary enables you to perform automated down-
loads and spidering tasks (curl.haxx.se). If
you need database access, an ODBC mod-
ule (www.iodbc.org, www.unixodbc.org) can be
used to query and modify RDBMSs such as
MySQL and PostgreSQL.

4 MIDI programming

Q’s MIDI interface, embodied by the midi mod-
ule, is based on Grame’s MidiShare library
(Fober et al., 1999). We have chosen MidiShare
because it has been around since the time of the
good old Atari and thus is quite mature, it has
been ported to a number of different platforms
(including Linux, Mac OS X and Windows), it
takes a unique “client graph” approach which
provides flexible dynamic routing of MIDI data
between different applications, and, last but not
least, it offers comprehensive support for han-
dling standard MIDI files.

While MidiShare already abstracts from all
messy hardware details, Q’s midi module even
goes one step further in that it also represents
MIDI messages not as cryptic byte sequences,
but as a high-level “algebraic” data type which
can be manipulated easily. For instance, note on
messages are denoted using data terms of the
form note_on CHANNEL NOTE VELOCITY. The
functions midi_get and midi_send are used
to read and write MIDI messages, respectively.
For example, Fig. 1 shows a little script for
transposing MIDI messages in realtime.

The midi module provides all necessary data
types and functions to process MIDI data in any
desired way. It also gives access to MidiShare’s
functions to handle standard MIDI files. In or-
der to work with entire MIDI sequences, MIDI
messages can be stored in Q’s built-in list data
structure, where they can be manipulated using

Q’s extensive set of generic list operations. Q’s
POSIX multithreading support allows you to
run multiple MIDI processing algorithms con-
currently and with realtime scheduling priori-
ties, which is useful or even essential for many
types of MIDI applications.

These features make it possible to imple-
ment fairly sophisticated MIDI applications
with moderate effort. To demonstrate this,
we have employed the midi module to pro-
gram various algorithmic composition tools and
step sequencers, as well as a specialized graph-
ical notation and sequencing software for per-
cussion pieces. The latter program, called
“clktrk”, was used by the composer Bene-
dict Mason for one of his recent projects
(felt | ebb | thus |brink |here | array | telling, per-
formed by the Ensemble Modern with the Junge
Deutsche Philharmonie at the Donaueschingen
Music Days 2004 and the Maerzmusik Berlin
2005).

Other generally useful tools with KDE/Qt-
based GUIs can be found on the Q homepage.
For instance, Fig. 2 shows the QMidiCC pro-
gram, a MidiShare patchbay which can be con-
figured to take care of your MidiShare drivers
and to automatically connect new clients as
soon as they show up in the MidiShare client
list. QMidiCC can also be connected to other
MidiShare applications to print their MIDI out-
put and to send them MIDI start and stop mes-
sages.

5 Audio and software synthesis

The audio interface consists of three mod-
ules which together provide the necessary fa-
cilities for processing digital audio in Q. The
audio module is based on PortAudio (v19),
a cross-platform audio library which provides
the necessary operations to work with the au-
dio interfaces of the host operating system
(www.portaudio.com). Under Linux this mod-
ule gives access to both ALSA (www.alsa-
project.org) and Jack (jackit.sf.net). The
sndfile module uses Erik de Castro Lopo’s
libsndfile library which allows you to read
and write sound files in a variety of formats
(www.mega-nerd.com/libsndfile). The wave
module provides basic operations to create, in-
spect and manipulate wave data represented as
“byte strings” (a lowlevel data structure pro-
vided by Q’s system interface which is used to
store raw binary data). It also includes oper-
ations for sample rate conversion (via libsam-

import midi;

/* register a MidiShare client and establish I/O connections */
def REF = midi_open "Transpose",
IO = midi_client_ref "MidiShare/ALSA Bridge",
_ = midi_connect IO REF || midi_connect REF IO;

/* transpose note on and off messages, leave other messages unchanged */
transp K (note_on CH N V)

= note_on CH (N+K) V;
transp K (note_off CH N V)

= note_off CH (N+K) V;
transp K MSG = MSG otherwise;

/* the following loop repeatedly reads a message, transposes it and
immediately outputs the transformed message */

transp_loop K = midi_send REF 0 (transp K MSG) || transp_loop K
where (_,_,_,MSG) = midi_get REF;

Figure 1: Sample MIDI script.

Figure 2: QMidiCC program.

plerate, www.mega-nerd.com/SRC) and fast
Fourier transforms (via FFTW, www.fftw.org),
as well as a function for drawing waveforms in
a GGI visual.

Q’s audio interface provides adequate sup-
port for simple audio applications such as audio
playback and recording, and provides a frame-
work for programming more advanced audio
analysis and synthesis techniques. For these
you’ll either have to provide your own C or C++
modules to do the necessary processing of wave
data, or employ Q’s osc module which allows
you to drive OSC-aware software synthesizers
(www.cnmat.berkeley.edu/OpenSoundControl).
We also offer an sc module which provides
special support for James McCartney’s Super-

Collider (McCartney, 2002).

The osc module defines an algebraic data
type as a high-level representation of OSC pack-
ets which can be manipulated easily. All stan-
dard OSC features are supported, including
OSC bundles. The module also implements a
simple UDP transport layer for sending and re-
ceiving OSC packets. In addition, the sc mod-
ule offers some convenience functions to control
SuperCollider’s sclang and scsynth applica-
tions.

Fig. 3 shows a little Q script implementing
some common OSC messages which can be used
to control the SuperCollider sound server. Us-
ing these facilities in combination with the midi
module, it is a relatively straightforward matter

import osc, sc;

// load a synthdef into the server
d_load NAME = sc_send (osc_message CMD_D_LOAD NAME);

// create a new synth node (add at the end of the main group)
s_new NAME ID ARGS

= sc_send (osc_message CMD_S_NEW (NAME,ID,1,0|ARGS));

// free a synth node
n_free ID = sc_send (osc_message CMD_N_FREE ID);

// set control parameters
n_set ID ARGS = sc_send (osc_message CMD_N_SET (ID|ARGS));

Figure 3: Sample OSC script.

/* get MIDI input */

midiin = (TIME,MSG) where (_,_,TIME,MSG) = midi_get REF;

/* current pitch wheel value and tuning table */

def WHEEL = ref 0.0, TT = map (ref.(*100.0)) [0..127];

/* calculate the frequency for a given MIDI note number N */

freq N = 440*2^((get (TT!N)-6900)/1200+get WHEEL/6);

/* The MIDI loop: Assign voices from a queue Q of preallocated SC synth units
in a round-robin fashion. Keep track of the currently assigned voices in a
dictionary P. The third parameter is the MIDI event to be processed next. */

/* note offs: set the gate of the synth to 0 and put it at the end of the queue */

loop P Q (_,note_on _ N 0)
= n_set I ("gate",0) || loop P Q midiin

where (I,_) = P!N, P = delete P N, Q = append Q I;
= loop P Q midiin otherwise;

loop P Q (T,note_off CH N _)
= loop P Q (T,note_on CH N 0);

/* note ons: turn note off if already sounding, then get a new voice from the
queue and set its gate to 1 */

loop P Q (T,note_on CH N V)
= n_set I ("gate",0) || loop P Q (T,note_on CH N V)

where (I,_) = P!N, P = delete P N, Q = append Q I;
= n_set I ("freq",FREQ,"gain",V/127,"gate",1) ||
loop P Q midiin
where [I|Q] = Q, FREQ = freq N,
P = insert P (N,(I,FREQ));

Figure 4: Excerpt from a MIDI to OSC processing loop.

to implement software synthesizers which can
be played in realtime via MIDI. All actual au-
dio processing takes place in the synthesis en-
gine, the Q script only acts as a kind of “MIDI
to OSC” translator. For instance, Fig. 4 shows
an excerpt from a typical MIDI processing loop.

An example of such a program, called “QSC-
Synth”, can be found on the Q homepage (cf.
Fig. 5). QSCSynth is a (KDE/Qt based) GUI
frontend for the sclang and scsynth programs
which allows you to play and control SuperCol-
lider synthesizers defined in an SCLang source
file. It implements a monotimbral software
synth which can be played via MIDI input and
other MidiShare applications. Moreover, with
MidiShare’s ALSA driver, QSCSynth can eas-
ily be wired up with ALSA-based sequencer ap-
plications like Rosegarden, employing it as a
fully programmable realtime software synthe-
sizer. The audio stream generated by Super-
Collider can be watched in an integrated wave-
form/FFT display, and can also be recorded in
an audio file. QSCSynth can also be configured
to map arbitrary MIDI controller messages to
corresponding OSC messages which change the
control parameters of the synthesizer and effect
units defined in the SCLang source file. More-
over, QSCSynth also provides its own control
surface (constructed automatically from the pa-
rameter descriptions found in the binary synth
definition files) which lets you control synth and
effect units from the GUI as well.

6 The future

While Q’s multimedia library already provides
a fairly complete framework for programming
multimedia and computer music applications on
Linux, there still remain a few things to be done:

• Finish the OpenGL and video support.

• Provide modules for some Linux-specific li-
braries such as Jack, LADSPA and DSSI.

• Provide high-level interfaces for computer
music applications such as algorithmic
composition. There are a few lessons
to be learned from existing environments
here, such as Rick Taube’s Common Music
(Taube, 2005), Grame’s Elody (Letz et al.,
2000) and Paul Hudak’s Haskore (Hudak,
2000b).

• Add graphical components for displaying
and editing music (piano rolls, notation,
etc.). For this we should try to reuse parts

from existing open source software, such
as Lilypond (lilypond.org), the GUIDO
library (www.salieri.org/guido) and
Rosegarden (www.rosegardenmusic.com).

• Add a “patcher”-like visual program-
ming interface, such as the one found in
IRCAM’s OpenMusic.

7 Conclusion

Functional programming has always played an
important role in computer music, because it
eases the symbolic manipulation of complex
structured data. However, to our knowledge no
other “modern-style” functional language cur-
rently provides the necessary interfaces to im-
plement sophisticated, realtime-capable multi-
media applications. We therefore believe that
Q is an interesting tool for those who would
like to explore MIDI programming, sound syn-
thesis and other multimedia applications, in the
context of a high-level, general-purpose, non-
imperative programming language.

While the Q core system is considered sta-
ble, the language and its libraries continue to
evolve, and it is our goal to turn Q into a vi-
able tool for rapid application development in
many different areas. We think that multime-
dia is an attractive playground for functional
programming, because modern FP languages al-
low many problems in this realm to be solved
in new and interesting ways; see in particular
Paul Hudak’s book on multimedia programming
with Haskell (Hudak, 2000a) for more exam-
ples. As the multithreading and realtime capa-
bilities of mainstream functional languages ma-
ture, it might also be an interesting option to
port some of Q’s libraries to other environments
such as the Glasgow Haskell compiler which of-
fer better execution speed than an interpreted
language, for the benefit of both the functional
programming community and multimedia appli-
cation developers.

References

Richard Bird and Philip Wadler. 1988. Intro-
duction to Functional Programming. Prentice
Hall, New York.

Nachum Dershowitz and Jean-Pierre Jouan-
naud. 1990. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, chapter 6,
pages 243–320. Elsevier.

Dominique Fober, Stephane Letz, and Yann Or-
larey. 1999. MidiShare joins the open sources

Figure 5: QSCSynth program.

softwares. In Proceedings of the International
Computer Music Conference, pages 311–313,
International Computer Music Association.
See also http://www.grame.fr/MidiShare.

Albert Gräf. 1991. Left-to-right tree pattern
matching. In Ronald V. Book, editor, Rewrit-
ing Techniques and Applications, LNCS 488,
pages 323–334. Springer.

Paul Hudak. 2000a. The Haskell School of Ex-
pression: Learning Functional Programming
Through Multimedia. Cambridge University
Press.

Paul Hudak. 2000b. Haskore Mu-
sic Tutorial. Yale University, De-
partment of Computer Science. See
http://www.haskell.org/haskore.

Stephane Letz, Dominique Fober, and Yann
Orlarey. 2000. Realtime composition in
Elody. In Proceedings of the International
Computer Music Conference, International

Computer Music Association. See also
http://www.grame.fr/Elody.

James McCartney. 2002. Rethinking the com-
puter music language: SuperCollider. Com-
puter Music Journal, 26(4):61–68. See also
http://supercollider.sourceforge.net.

Michael O’Donnell. 1985. Equational Logic
as a Programming Language. Series in the
Foundations of Computing. MIT Press, Cam-
bridge, Mass.

Heinrich K. Taube. 2005. Notes from the Met-
alevel: Introduction to Algorithmic Music
Composition. Swets & Zeitlinger. To appear.
http://pinhead.music.uiuc.edu/~hkt/nm.

